FORTY-FIFTH ANNUAL SYMPOSIUM ON FREQUENCY CONTROL

A FREQUENCY-DOMAIN VIEW OF TIME-DOMAIN CHARACTERIZATION
OF CLOCKS AND TIME AND FREQUENCY DISTRIBUTION SYSTEMS

David W. Allan, Marc A. Weiss, and James L. Jespersen

Time & Frequency Division
National Institute of Standards & Technology
Boulder, Colorado 80303

Abstract

An IEEE standard (No. 1139-1988) now exists for
“Standard Terminology for Fundamental Frequency and
Time Metrology. As defined in this standard, the time-
domain stability measure, 0(7) has evolved into a useful
means of characterizing a clock’s frequency stability.
There exists an ambiguity problem with o,(7) for power -
law spectral densities, S,(f), proportional to f*, where a =
+1. For example, white noise phase modulation (PM) and
flicker noise PM appear the same on a o,(7) plot. Because
of this ambiguity, Modo,(7) was developed.

More recently, it has become apparent there is no
accepted measure for the performance of time and
frequency distribution systems. At the current time, there
is an important need for a good method for characterizing
time and frequency transfer links in telecommunication
networks.

Last year at this symposium suggestions were given
for ways to characterize time and frequency distribution
systems. Because of the above ambiguity problem, ¢,()
was shown to be a less useful measure than Moda(r) for
such systems. It was shown that o,(r) = 7-Modo, (V3
is a useful measure of time stability for distribution
systems. For the case of white noise PM, a,() is simply
equal to the standard deviation for 7 equal to the data
spacing, 7, and is equal to the standard deviation of the
mean for 7 equal to the data length (T).

In this paper, we recast these measures into the
frequency-domain. We treat each of these measures as a
digital filter and study their transfer functions. This type
of measure is easily related to the passband characteristics
of a given system, a particularly useful engineering
approach.

Introduction
This paper concerns the characterization of
frequency standards, clocks and associated systems. These

associated systems may include: time and frequency
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measurement systems, time and frequency transmissions
systems, time and frequency comparison systems, and
telecommunication networks. As we shall see no single
characterization is suitable. However, in this paper we
discuss three statistical characterizations which cover most
of the situations encountered in actual practice.

The characterizations that we require can be
approached from two points of view: the time domain and
the frequency domain. In this paper we describe in general
terms the time and frequency domain approaches and then
explain in some detail how the time domain approaches can
be interpreted from the frequency domain point of view.
We feel it is important to make this interpretation because
of the significance of frequency domain approaches--
particularly in engineering environments.

We will next explain why the mean and the standard
deviation don’t work for frequency standards. The simple
mean, the standard deviation, and its square the classical
variance, are well known statistical measures of a set of
data points. It seems natural therefore that we should
apply such measures to characterize various kinds of clock
associated processes. However, application of these
quickly reveals some significant problems.

Let’s begin by considering the computation of the
mean frequency output of a frequency standard. Normally,
when we compute the mean of some process we Suppose
that including more data points in the computation brings
us ever closer to the true mean of the process and that an
infinite number of data points yields the true mean. Of
course in the real world we must be content with a finite
number of points always leaving some uncertainty in our
attempt to find the mean. Nevertheless we assume that we
can approach the true mean as nearly as we like if we are
willing to collect enough data points.

Is this true of frequency standards? The answer
surprisingly enough is "No!". How can this be? The
answer is simple enough. Frequency standards do not
generate a constant frequency output contaminated only by
white noise. If they did we could average the output to
get rid of the noise. That is, white noise is the kind of
noise that can be averaged away. This is because for every
phase advance it produces in the output of the frequency



standard, it eventually produces a compensating phase
retardation, so that the two cancel in the averaging process.

Much research has shown that a number of noise
processes, in addition to white noise, afflict frequency
standards. we can gualitatively say that these other kinds
of noise represent trends--not necessarily linear trends--in
the output frequency of a standard. In later sections of this
paper, we will quantitatively identify these "trends" but for
now we will stay with the generic "trend” since this notion
is enough to demonstrate why standard statistical methods
don’t work for frequency standards.

As an example, consider a frequency standard
whose frequency output is contaminated with white noise
and also increases linearly with time--a very simple kind of
trend. What can we say about the mean output frequency
of such a standard? Not much, because there is no
average; we have defined the standard as producing a
monitonically increasing frequency. The frequency we find
by averaging is a function of when we start the
measurement and the length of time over which the average
is made.

What can we do when confronted with such a
situation? An obvious answer is to remove the trend, by
whatever means, and then compute the mean in the normal
way from the modified data. In this way we would expect
to converge on the true mean as we average away the white
noise by using ever more data points.

The process we have just described is the essence of
a number of approaches that have been developed to
produce useful statistical measures for the output signals of
frequency standards and related devices.[1] We can think
of it as a two step process: First we remove the offending
trends, and then we compute the statistical measures in the
standard way. This process is not always evident when we
look at the statistical measures in common use. More often
than not, the two steps are combined into one obscuring the
underlying process.

We will next describe the frequency- and time-
domain measures of frequency and time stability. The
standard deviation and the mean are examples of what are
called time domain measures. That is, we collect a number
of data points, one after the other, and then use these
points to construct some useful statistical measure. There
are also frequency domain measures. The power spectral
density of a set of data points is an example. It provides
us with a picture of the deviations in the data having a
particular (Fourier frequency) spectral component.

As you might suspect, frequency- and time-domain
measures are related. In later sections of this paper we
explore in some detail the relationships between time- and
frequency-domain measures. However, as a simple
example consider the following. Suppose we want to
remove a long term trend from the output signal of a
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frequency standard. There are a number of ways we might
proceed. We might, for example, fit a polynomial to the
data and subtract this polynomial from the data to generate
a new set of data which we could then treat in standard
statistical fashion. If the trend were strictly linear, then the
polynomial curve would simply be a straight line whose
slope revealed the magnitude of the frequency drift.

Another approach is to pass the data through a high
pass digital filter to remove the low frequency components-
-which is what a trend looks like to such a filter.[2]

A particularly simple high pass filter can be
constructed by taking what are called "first differences” of
the data. That is we subtract the kth data point from the
kth + 1 data point, for all data points. This process
effectively removes long term trends from the data.

As we shall see later the “first differencing”
process corresponds to a digital filter in the frequency
domain whose characteristics can be defined precisely. We
should also add that the polynomial fitting procedure also
corresponds to a particular digital filter. However the
emphasis in this paper is on "difference” type procedures
since they are easy to implement and are commonly used
by the time and frequency community.

We now describe three different variances. One is
particularly useful for characterizing the frequency stability
of clocks and oscillators. The next is most useful for
characterizing the frequency stability of time and frequency
measurement systems, distribution and comparison systems
as well as for distinguishing between white noise PM and
flicker noise PM. The last is most useful for characterizing
the time stability of any of the above as well as for network
synchronization; e.g. telecommunications network. All
three of these variances are built upon taking finite
differences of the data.

The notion of taking differences to remove trends
in data is an old one. We quote von Neuman et. al. from
a 1942 paper [3]:

"There are cases, however, where the standard
deviation may be held constant, but the mean varies from
one observation to the next. If no correction is made for
such variation of the mean, and the standard deviation is
computed from the data in the conventional way, then the
estimated standard deviation will tend to be larger than the
true population value. When the variation in the mean is
gradual, so that a trend (which need not be linear) is
shifting the mean of the population, a rather simple method
of minimizing the effect of the trend on dispersion is to
estimate the standard deviation from differences."”



Perhaps the most important part of this quote is the
parenthetical "which need not be linear." As it turns out
taking first differences and second differences--repeating
the differencing process twice--is sufficient to remove most
of the kinds of noise that one encounters in clocks. Much
of the work in the last few decades in the statistical
characterization of frequency standards has been directed
toward understanding in detail the implications of using the
differencing approach. Today this approach is the mainstay
of time domain approaches to characterizing time related
processes. In this paper we will focus on three such
characterizations with their associated interpretations in the
frequency domain. We briefly introduce them here with
details following in later sections.

The first statistical measure we want to introduce,
also historically the oldest, is called the "two-sample
variance," the "pair variance" or the "Allan Variance" [1,
4-6] Tt is denoted 02() and referred to herein as AVAR.
1t is defined as follows:

) = 5 <(By>, m

where the brackets " < >" denote expectation value, A is
the first finite difference operator and y is the relative
frequency offset as defined below.

AVAR was developed to address the problem of
finding a suitable measure of the variability of the output
frequency of a frequency standard. As we know, the
computation of the standard variance will not work when
applied to frequency standards because they contain noise
processes which cannot be averaged out. The core idea of
the Allan variance has already been introduced--the
differencing method. Here the data to be differenced
consists of a number of samples of the frequency of the
standard taken over some period of time. The differencing
procedure filters the noise processes that make the normal
variance computation unsuitable. The actual formula,
discussed later, accomplishes both the filtering and the
variance computation in the same step.

Before we leave AVAR in this introductory section
we should point out one thing. The output of a frequency
standard is actually a signal whose phase advances in time
with respect to some reference. We use phase or time
difference almost interchangeably. This is so because they
are directly proportional: x(t) = $(t)/2%v,, where ¢(t) is
the phase difference reading in radians between two
standards. The dimensions of x(t) are time. In practice,
the frequency is derived by measuring the time or phase
difference x(t) of the signal between the standard in
question and the reference at two different times say t and
t+7 giving us phases x(t) and x(t+7).

Let »(t) be the output frequency of the standard in
question, and let v, be the frequency of the reference. We
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will assume, without loss of generality, that v, is perfect.
The average relative frequency offset, y(t) = (#(t)-»)/v,
of the standard in question over the time interval t to t+7
is then

_ Ox(e+7) - x() @)

T

If we think of AVAR from the point of view of
phase  measurements x(t) instead of frequency
measurements y(t), then AVAR is constructed in terms of
the second differences in phase but first differences in
frequency since frequency by definition is obtained from
first differences in phase. An alternative and very useful
definition of AVAR is as follows:

@) = - <%, O

212

where "AZ2" is the second finite-difference operator.

b0

The second statistical measure we want to introduce
is called the modified Allan variance or from here on
"MVAR." [5, 7-9] It is defined as follows:

1 a%ny>, @)

) 212

where X denotes phase averages being used in the second
difference. We note that equations (3) and (4) are identical
except for the phase averages. The three sequential phase
averages are each taken over an interval 7. As 7 changes,
this changes the bandwidth in the software in just the right
way to remove the ambiguity problem in AVAR. In other
words, MVAR can distinguish between white noise PM and
flicker noise PM, whereas AVAR cannot. In a later
section this distinction will be more evident when we
compare MVAR and AVAR from the frequency domain
point of view.

o))

Both AVAR and MVAR are particularly suited to
characterizing the frequency instabilities of frequency
standards. However there are situations where the
emphasis is not on frequency but on time measurements.
This brings up the final measurement we want to introduce,
TVAR, where the "T" emphasizes the fact that we are
focusing on time rather than frequency measurements. It
is defined as follows:

() = % <(A%x)?>. ®

We see that a,(r) is just 7Modo,(r)//3 and has many of the
advantages of Moday(r), buf is now a time stability
measure.

How does the change in emphasis come about? [10-
11] The notion of studying frequency instabilities has a
local flavor to it in the sense that frequency is defined by
a certain resonance frequency of the Cesium atom or quartz



resonator while epoch time is an arbitrary manmade
concept requiring coordination over time and space. Thus
if we want to compare the frequencies of two remotely
located standards we need to introduce some
communication link which allows us to compare the phase
or time difference between our two clocks. By measuring
the change in the time or phase difference between these
two standards over time we can determine the frequency
offset between the two clocks.

Furthermore we might also want to determine the
actual time offset between the clocks which again leads us
to making time or phase difference measurements. Both of
these examples point up the need for some statistical
characterization where the focus is on time or phase rather
than frequency, hence TVAR. So there is no confusion,
we should point out that the time or phase difference
between two clocks is a measurement. Whereas, the finite-
difference operators, as in the above variance definitions,
operates on a time series of measurement data. The
advantages and disadvantages of these three variances will
be more apparent later. [11]

We shall also look at the TVAR transfer function
from the frequency domain point view This view and some
other considerations reveal why TVAR is a more suitable
measure for time related measurements than AVAR and
MVAR,

fer Function A h_to Vari

A variance can be viewed from either the time
domain or the frequency domain. [12-14] We intend to
look at variances from both perspectives to aid in
understanding what certain variances measure. We begin
by describing the relationship between the variances in the
two domains.

A, Var in Tim main;

If, in the time domain, we have a time series of
observables, x(#), we may define a particular variance with
the help of a convolving function, h(t), where h(t) is the

impulse response function. We use the convolution, g, of
x and A:

g() = f () -h(t-A)dt. ©®

The variance corresponding to A, of the time series x(z) is
the infinite time average of g squared,

lim 1 i
2 _ 1, 2
= f g(A) dh. ™
1-m

The convolving function h, here, is the important
definition. It determines how the variance selects data in
the time domain, which is then squared and averaged. For
example, the convolving function, h, for the classical
variance is the step pulse: [2]
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Figure 1. Impulse response function for classical variance.
Each sample is taken over with an averaging time 7. Each
sample is differenced with the mean, squared and averaged
to obtain the classical variance.

This makes
g = x0), , ®

the average value of x from ¢ to ¢+7. Thus the variance
here is simply the second moment of X.

For the Allan Variance (AVAR), & is the double

pulse:
h(t)
1/271
-7 "
t
| r
-1/21

Figure 2. Impulse response function for the Allan or two-
sample variance. Adjacent measurements--each averaged
over an interval 7--are differenced. This change from one
interval 7 to the next is squared and averaged across the
data, then divided by 2 for an AVAR estimate.

This makes the AVAR the expected value of the first
difference squared. The normal use of AVAR is to
characterize frequency stability. Thus, if x(2) is a time
series of clock time differences, the first difference of these
divided by 7, y(t), is the corresponding time series of
frequency differences, averaged over the interval 7. Then
convolution for the usual AVAR is

g0 = [YWh(A-ndr, )

giving a first difference of frequencies averaged over a
time interval 7, or a second difference of time values. The
integral of the square of this g results in the Allan, or two-
sample variance

lim 1,

m (03, - ¥, 0
Towy | 8OFdh = ———==—

A=-T/2 2
For the Modified Allan Variance (MVAR), we first

note that in the Allan variance the time interval for
averaging frequency, 7, is a multiple of the basic sampling

03(1) =



interval 7,. Thus, it is possible to make n shifts of the
pulses in figure 2 by 7o, where r=n-7. The modified
Allan variance averages several first differences of
frequency in this way, thus adjusting the software
bandwidth to exploit the bandwidth dependence of white
phase noise. As an example we show the convolving
function for MVAR as the sum of two functions, as in
figure 2, displaced by 7/2.

h(t)
1/7

1/27

-1/271

-1/7

Figure 3. Impulse response function for the modified Allan
or two-sample variance. This results from forming a
second finite-difference from three contiguous intervals.
Each interval contains the phase or time averaged over an
interval . These second differences are squared and
averaged across the data, then divided by 27 for an
MVAR estimate.

The new variance, o3(r) (TVAR), is simply
7-ModoX(7)/3. Thus, the convolving function has the
same shape as in figure 3, but the vertical scaling needs to
be multiplied by 7/3.

B. Variances_in the Frequency Domain: Transfer
Function

We now examine the impulse response functions of
these variances as transformed into the frequency domain.
We will see that the convolving function k again is the
important definition.  In this domain, the Fourier
transform, H of h, becomes a kind of transfer function for
defining the variance.

There are two steps to understanding the passage
from the functions we’ve discussed in the time domain to
the frequency domain. First we use the fact that an infinite
time average of a function squared equals the integral of
the spectrum of that function:

m «
i
T’I"w ]’ g(A)4dh = f s, (Ndf an
A=~ 0
Since the variance is an infinite time average of the square
of the function g, it also equals the area under the power
spectral density of g, the square of the Fourier transform
of g.
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Second, we use the mathematical relation that the
Fourier transform of a convolution is the product of the
Fourier transforms. Let us put these two facts together.
For the general variance %, defined as the integral of the
square of the time series x(t) convolved with h(t), we have

o* =[5 HNPS, 12)
1]

where S,(f) is the spectrum of x, and H(f) is the Fourier
transform of h.

This H(f) is the transfer function of the variance.
This differs from the usual use of the term "transfer
function” in that instead of producing a signal sculpted by
the shape of H, we produce a variance which is sensitive
to frequencies according to the shape of H. [2]

This last equation, then, gives the relationship
between the definitions of variance in the time and
frequency domains. We see that the convolving function
h that defines how the variance selects data in the time
domain, also, via its Fourier transform, defines which
frequencies the variance is sensitive to.

C. Transfer Functions of AVAR, MVAR

The transfer function for AVAR is shown in figure
4, a linear plot, for two different values of n, where 7=
n'r,. We see that the variance selects a band of
frequencies for a given 7, and that the width of this band
decreases as 7 increases. Also note that the function goes
to 0 at the origin. Indeed it goes to O fast enough that it
remains integrable when multiplied by an f* spectrum with
« greater than -3. [6]

AVAR TRANSFER FUNCTION as it depends on 7
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Figure 4. This is a plot of the squared transfer function of
the impulse response function shown in figure 2. Itis the
function that multiplies the spectrum of the frequency
deviations to obtain of,(r). It is plotted hear for two values
of 7 (7, and 27, where 1/7, = 1). Note, the abscissa is
linear and that the bandwidth of H(f) decreases as 7
increases.
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In figure 5, we see the transfer functions plotted on
a logarithmic horizontal axis for n taking on the first eight
powers of 2. We see that logarithmically, the bandwidth
remains constant, and that the power-of-two transfer
functions scan more-or-less independent frequency bands.
Figure 6 shows the sum of these transfer functions. We
see here that this sum yields a flat band-pass filter. The
interpretation here is that this band pass represents the sum
of information presented in o,(7) versus 7 plot. That is,
the Allan variance plot of points chosen with n equal to a
range of powers-of-two shows the stability of the data due
to a certain band of frequencies. The sensitivity of AVAR
to the different frequencies in this band is nearly constant.
The band extends from 1/(2n7,) to 1/(27,), where n is here
the highest power of 2 chosen for the ,(7) plot.

AVAR TRANSFER FUNCTION as it depends on 7
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Figure 5. This is a plot of squared transfer functions of the
impulse response function shown in figure 2 for 8 values of
7 (1, 2, 4, 8....128 x 7). Note, the abscissa is
logarithmic, and the apparent width of each transfer
function is the same. They also appear distributed
uniformly across a certain span of Fourier frequencies.

Next we look at the transfer function for MVAR.
Analogous to AVAR, we see in figure 7 the MVAR
transfer function in a linear plot for two different 7 values.
Here also, we see that the bandwidth decreases as 7
increases, but in addition, the amplitude decreases also.
This comes from the additional software filter in MVAR,
the phase averaging, allowing MVAR to distinguish white
phase noise from flicker phase noise. In figure 8 the
MVAR transfer functions for powers-of-two 7 values are
summed as in figure 6; again, we see a flat band-pass.
Thus, an MVAR power-of-two plot also presents the
stability information due to a range of frequencies, with
nominally equal sensitivity to frequencies within the range.
For the same range of 7 values, the MVAR cumulative
transfer function is a little wider than that of AVAR and
the high frequency end is slightly steeper.

()12
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AVAR CUMULATIVE TRANSFER FUNCTION
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Figure 6. This figure shows the sum of the squared
transfer functions for 9 values of 7 (1, 2, 4, 8....256x 7))
for 03(1). We conclude that a o,(7) plot for such a set of
7 values gives a nearly constant response to Fourier
frequency over about two decades.

MVAR TRANSFER FUNCTION as it depends on (7)
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Figure 7. This is a plot of the squared transfer function of
the impulse response function shown in figure 3. It is the
function that multiplies the spectrum of the frequency
deviations to obtain Modoj(7). It is plotted hear for two
values of 7 (7, and 27, where 1/r, = 1). Note, the
abscissa is linear and that the bandwidth of H(f) decreases
as 7 increases. Notice also, that the amplitude decreases
with increasing 7. This is due to the software band-width
change brought about by phase averaging.

In figure 9, we see the TVAR transfer function.
Note here that the function "rings" forever. That is,
neighboring sinusoidal lobes do not die out. Of course
with finite data sampling, there is always a high-frequency



MVAR CUMULATIVE TRANSFER FUNCTION
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Figure 8. This figure shows the sum of the squared
transfer functions for 9 values of 7 (1, 2, 4, 8....256 x 1)
for Moday(r). We conclude that a Modo,(7) plot for such
a set of 7 values gives a nearly constant response to Fourier
frequency over slightly more than two decades.

TVAR TRANSFER FUNCTION
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Figure 9. This is a plot of the squared transfer function of
the impulse response function for TVAR. It is the function
that multiplies the spectrum of the time deviations to obtain
0,2(r). It is plotted hear for two values of 7 (7, and 27,
where 1/7, = 1). Note, the abscissa is linear and that the
bandwidth and the amplitude of H(f) decrease as 7
increases—-similar to MVAR. As with MVAR, this is due
to the software band-width change brought about by phase
averaging. This transfer function, for a given 7, has repeat
lobes into the higher Fourier frequencies indefinitely.

cut-off given by the Nyquist frequency 1/(27,). The sum
of powers-of-two transfer functions, figure 10, shows a
fairly flat band-pass up to the high-frequency end where

I

10!
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there is greater frequency sensitivity--peaked at the Nyquist
frequency, fnyq: Frequencies higher than the Nyquist
frequency can be aliased into a TVAR computation up to
the cut-off frequency, f,. This points out the value of the
general rule to have the sampling period equal to or less
than 1/(2fyyy). Then aliasing will not be a problem.

TVAR CUMULATIVE TRANSFER FUNCTION
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Figure 10. This figure shows the sum of the squared
transfer functions for 9 values of 7 (1, 2, 4, 8....256 x 7.
for TVAR. We conclude that a ¢, %() plot for such a set
of 7 values gives a nearly constant response to Fourier
frequency over slightly two decades but with increased
sensitivity to Fourier frequencies at the Nyquist frequency,
fayqr and at 1/2 fgy,. Frequencies higher than 2fy,, can be
aliased into the computation of TVAR. Frequencies will be
aliased up to the measurement system cut-off frequency fi.
Maximum aliasing occurs at 3/2, 5/2, 7/2...x fyyq. A null
occurs at twice the Nyquist frequency. Sensitivities at the
non-aliased frequencies above 2fyy, are about the same as
they are below the Nyquist frequency.

If the data sampling rate, 7,, is greater than
1/(2fnyg), then a TVAR plot will include Fourier energy
from 1/(2n7,) up to f,, with about equal sensitivity, except
at the aliased values (3/2, 5/2, 7/2... X fyyq up to f). If
f, is equal to fNyq, then the TVAR cumulative transfer
function looks very much like the MVAR cumulative
transfer function.

Applications and Discussion

In the previous sections we have learned of three
time domain statistical measures that are particularly
appropriate for applications involving frequency standards,
clocks and their associated measurement, comparison and
distribution systems. We have also seen in some detail
how these three time domain measures can be interpreted
in the frequency domain. In this section we consider where
each time domain measure is most appropriately applied.
As we shall see, the selection of the appropriate time
domain measure is a function of the types of noise which
are characteristic of the process we are investigating as
well as whether we want to study time stability or the



frequency stability. We want to choose that measure which
most clearly reveals the types and levels of noise involved
in a particular application.

As we stated in the introduction, AVAR and MVAR
were developed first, while TVAR is the newest member
of our triad of statistical measures. In general terms,
AVAR and MVAR are the measures to use when we are
primarily interested in systems and devices where
frequency is the quantity of interest, while TVAR is more
appropriate where the quantity of interest is primarily time
or phase.

Before we begin our discussion of specific
applications, let’s briefly review the five kinds of noise
processes we are likely to encounter for the systems
discussed in this paper. Although there are many ways to
inventory these noise processes it is common in the time
and frequency literature to list them as follows:

white noise PM (phase modulation)
flicker noise PM )
white noise FM (frequency modulation)
flicker noise FM

random walk FM

Ll o

Mathematically these noise processes have the
power-law spectral density relationships shown in the Table
1. Table 2 shows the appropriate mathematical expression
for each of the three time domain measures. Table 3 gives
the coefficients needed to translate from the time domain to
the frequency domain.

Figure 11 displays illustrative examples of the time
variation, x(t), of these noise processes. As we proceed
from type 1 through type 5 noise we notice that the
amplitude variation with time grows increasingly more
slowly. Generally speaking, for our applications, the
physical explanation for this trend is as follows. The time
variations with a £* and f* spectrum, for example, are
often related to environmental factors such as temperature
variations, mechanical shock, and path delay variations
while the faster variations represented by f© and f!
processes are more likely related to internal characteristics
of the device itself. Here, for example, we think of the
noisy electronic components that make up the amplifying
stages in a frequency standard.

As we have learned in previous sections AVAR,
MVAR and TVAR have different characteristics in the
frequency domain so it is not surprising that one time
domain measure is better suited for one kind of noise
process than another.

AVAR and MV AR are frequency-stability measures,
and AVAR is particularly svited for measuring the
intermediate to long-term stability of clocks and oscillators.
MVAR is generally more suited for electronically
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Figure 11. This is a display of the commonly occurring
five power-law spectral density processes. These are often
used as models for the time and/or frequency deviations in
precision frequency sources.

generated noise processes and short-term frequency stability
measurements. TVAR is a time-stability measure and is
also suited for electronically generated noise processes.
Both MVAR and TVAR are also sensitive to low frequency
components often determined by environmental factors.
TVAR is particularly suited for measuring the stability of
time dissemination, comparison or measurement systems.
It is also well suited as a measure of synchronization
stability in telecommunication’s networks.

We can see this from a different perspective by
considering how AVAR, MVAR and TVAR vary with 7
for our five dominant noise processes. Figures 12, 13 and
14 display the r dependance for our three time domain
measures. If we look at figure 12, we see that AVAR does
not discriminate between white PM and flicker PM. This,
as we said earlier, was one of the primary reasons for
introducing MVAR, which as figure 13 shows, does
discriminate between white PM and flicker PM. If we look
at figure 14, we see that TVAR displays unambiguously the
five noise types, as does MVAR, but that it also more
clearly reveals the presence of white PM and flicker PM
than does MVAR. This is, of course, the reason that
TVAR was introduced since it "focuses” on the noise
processes that are of most interest when we are making
phase or time measurements.



Table 1. The power-law spectral density relationships for the five kinds of noise processes we

are likely to encounter for the systems discussed in this paper.

NOISE TYPE o g ’ w 7
White PM 0 2 -3 -1
Flicker PM 1 -1 2 2 0
White FM 0 -2 -1 -1 1
Flicker FM -1 -3 0 0 2

Random Walk FM 2 -4 1 1 3

Where: 0% (r) = a,7 Sy() = hy £

2 = ? =
Mod 0,2 (7) = b,7* S,(f) = h,
ol (r) = ¢, S = hg £
o H(r) = —5— Mod o, X(7) S,(f) = @) S«

*Table 2. The appropriate mathematical expression for each of the three time domain measures.

ABBREVIATION NAME EXPRESSION
2 _ 1 2
ay(r) = —<(ay)y>
AVAR ALLAN VARIANCE 2
= L<(A2x)z>
212
MODIFIED
MVAR ALLAN VARIANCE Modo’(x) =—L<a%)?>
Y 212
TVAR TIME VARIANCE al(x) = %<(A2£)2>
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Table 3. The coefficients needed to translate from the time domain to the frequency domain.

NOISE TYPE S,(f) S,(H)
White PM @} 5 2 1o 0
ite —3—hz— [t205(0)] f2 o [t o ()] f
. 27 )? 3 2 _
Flicker PM (_:2.. [<203(o)] f* 35 (%o (01 £
White FM 2 [t'ay()] f° L2 peig¥ay £
@2n)
Flicker FM Lt | —2 ek £
icker T [, () f nyom [t %0, (v)] f
Random Walk FM 6 (etode)] £2 240 o362 £
o 1 vl GO

A = 1.038 + 3¢nQxf,r)

Table 4 shows in some detail the kinds of noise
processes that are associated with various areas of
application. The table also shows which of the three time
domain measures is most appropriate for each particular
application. We show the five different types of power-
law-spectra and the ranges of applicability. These ranges
include those for precision oscillators, for time distribution,
network and comparison systems. From this table it is
easy to see why MVAR and TVAR are better measures
than AVAR for time distribution, network and comparison
systems. On the other hand, AVAR estimator of frequency
changes for white noise FM processes. This is important
for commercial rubidium, cesium and for passive hydrogen
masers. AVAR is also simpler to compute and is typically
more intuitive than the other two variances. It nicely
covers the range of applicability for precision oscillators
except for the ambiguity problem in differentiating between
white PM and flicker PM. This is only a problem for
short-term stability in the case of active hydrogen masers
and quartz crystal oscillators. In addition, kroy(7) is
unbiased and useful measure of time error of prediction
over the interval r. The constant k depends on the power-
law noise type, but is nominally equal to 1. [15]
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The five power-law processes for the most part
provide adequate modeling for time and frequency
metrology. The higher values of alpha typically are used
as models for the short-term stability of clocks and
oscillators. The lower ends of the ranges are often
appropriate models for the long-term stability of clocks and
oscillators as well as for the time distribution, comparison,
network and measurement systems. These lower values of
alpha are often contaminated with diurnal and annual
variations in these systems causing them to appear low-
frequency dispersive. Some time comparison systems, such
as GPS used in the common-view mode, are well modeled
by white-noise PM in the day-to-day deviations. The
bottom end of the variance ranges are those points where
these variances are no longer convergent. If models were
needed with lower values of alpha than those shown, then
variances with higher order differences could be used, such
as the Kolmogorov structure functions. [16] These three
measures are convergent for the upper ranges of « and 8
(@ > 42 or B8 > 0), but only some of the Fourier
transform relationships have not been worked out. [2] This
is only because these models are not usual.
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Figure 12, 13 and 14. These three figures are example
plots for the square root of AVAR, MVAR, and TVAR,
respectively. The sensitivity of these variances to the five
power-law spectral density processes illustrated in figure 11
are depicted. Notice, that the slope on the o,(r) plot is the
same for white-noise PM as for flicker-noise PM (-1; { = -
2). Notice also, that it is easier—visually--to distinguish
between white phase, flicker phase and random walk phase
on a o,(7) plot than from a Modo,(r) plot. The slope
changes are more dramatic to the eye. These three noise
processes are particularly useful models for systems where

time measurements are important.

M
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Table 4. The kinds of noise processes that are associated
with various areas of application. We also see which of
the three time domain measures is most appropriate for
each particular application.

_O. Noise Type Range of Applicability

Ao 4 4
+2 White PM ’
+1 Flicker PM E
[y —_]

i g182 T
0 White FM g‘ % H %g » 2zl s
-1 Flicker FM g_gf 1 |E§ §§, 5 8|4
»-—‘5:-2 £ Zle | |
-2 Random Walk FM (524 [ SEE
<| 2|

Conclusion mm

Over the last few years, the need for a measure of
time stability has become apparent. A search of the
literature reveals that the classical measures (standard
deviation, mean and variance) have lead to confusing and
often misinterpreted conclusions. A measure, TVAR, is
shown to have the attributes needed for characterizing the
random processes in systems where time stability or phase
stability is important. TVAR was compared with and
contrasted to the other two previously developed time-
domain statistical measures. The need for the three
measures is also explained.

In particular, we have discussed how these three
measures are appropriate for frequency standards, clocks
and their associated measurement and distribution systems.
We have shown how these measures can be used to
determine the five noise processes that dominate most of
the systems of interest in this paper. However, we have
also examined these measures from a frequency-domain
point of view and have shown how each measure
corresponds to a particular transfer function. This
procedure reveals the way time domain measures treat the
various noise processes from a frequency domain point of
view. It also provides a link, for those more accustomed
to working in the frequency domain, to the time domain
measures which are frequently employed by the time and
frequency community.
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